2-Hydroxypenta-2,4-dienoate metabolic pathway genes in a strong polychlorinated biphenyl degrader, Rhodococcus sp. strain RHA1.

نویسندگان

  • Masayuki Sakai
  • Keisuke Miyauchi
  • Noboru Kato
  • Eiji Masai
  • Masao Fukuda
چکیده

A gram-positive polychlorinated biphenyl (PCB) degrader, Rhodococcus sp. strain RHA1, metabolizes biphenyl through the 2-hydroxypenta-2,4-dienoate (HPD) and benzoate metabolic pathways. The HPD metabolic pathway genes, the HPD hydratase (bphE1), 4-hydroxy-2-oxovalerate aldolase (bphF1), and acetaldehyde dehydrogenase (acylating) (bphG) genes, were cloned from RHA1. The deduced amino acid sequences of bphGF1E1 have 30 to 58% identity with those of the HPD metabolic pathway genes of gram-negative bacteria. The order of these genes, bphG-bphF1-bphE1, differs from that of the HPD metabolic pathway genes, bphE-bphG-bphF, in gram-negative degraders of PCB, phenol, and toluene. Reverse transcription-PCR experiments indicated that the bphGF1E1 genes are inducibly cotranscribed in cells grown on biphenyl and ethylbenzene. Primer extension analysis revealed that the transcriptional initiation site exists within the bphR gene located adjacent to and upstream of bphG, which is deduced to code a transcriptional regulator. The respective enzyme activities of bphGF1E1 gene products were detected in Rhodococcus erythropolis IAM1399 carrying a bphGF1E1 plasmid. The insertional inactivation of the bphE1, bphF1, and bphG genes resulted in the loss of the corresponding enzyme activities and diminished growth on both biphenyl and ethylbenzene. Severe growth interference was observed during growth on biphenyl. The growth defects were partially restored by the introduction of plasmids containing the respective intact genes. These results indicated that the cloned bphGF1E1 genes are not only responsible for the primary metabolism of HPD during growth on both biphenyl and ethylbenzene but are also involved in preventing the accumulation of unexpected toxic metabolites, which interfere with the growth of RHA1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two nearly identical aromatic compound hydrolase genes in a strong polychlorinated biphenyl degrader, Rhodococcus sp. strain RHA1.

The two 2-hydroxy-6-oxohepta-2,4-dienoate (HOHD) hydrolase genes, etbD1 and etbD2, were cloned from a strong polychlorinated biphenyl (PCB) degrader, Rhodococcus sp. strain RHA1, and their nucleotide sequences were determined. The etbD2 gene was located in the vicinity of bphA gene homologs and encoded an enzyme whose amino-terminal sequence was very similar to the amino-terminal sequence of th...

متن کامل

Cloning and characterization of benzoate catabolic genes in the gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1.

Benzoate catabolism is thought to play a key role in aerobic bacterial degradation of biphenyl and polychlorinated biphenyls (PCBs). Benzoate catabolic genes were cloned from a PCB degrader, Rhodococcus sp. strain RHA1, by using PCR amplification and temporal temperature gradient electrophoresis separation. A nucleotide sequence determination revealed that the deduced amino acid sequences encod...

متن کامل

A Novel Transformation of Polychlorinated Biphenyls by Rhodococcus sp. Strain RHA1.

We have characterized a biphenyl degrader, Rhodococcus sp. strain RHA1. Biphenyl-grown cells of strain RHA1 efficiently transformed 45 components in the 62 major peaks of a polychlorinated biphenyl (PCB) mixture of Kanechlors 200, 300, 400, and 500 within 3 days, which includes mono- to octachlorobiphenyls. Among the intermediate metabolites of PCB transformation, di- and trichlorobenzoic acids...

متن کامل

Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1.

Rhodococcus sp. strain RHA1 is a gram-positive polychlorinated biphenyl (PCB) degrader which can degrade 10 ppm of PCB48 (equivalent to Aroclor1248), including tri-, tetra-, and pentachlorobiphenyls, in a few days. We isolated the 7.6-kb EcoRI-BamHI fragment carrying the biphenyl catabolic genes of RHA1 and determined their nucleotide sequence. On the basis of deduced amino acid sequence homolo...

متن کامل

Multiple-subunit genes of the aromatic-ring-hydroxylating dioxygenase play an active role in biphenyl and polychlorinated biphenyl degradation in Rhodococcus sp. strain RHA1.

A gram-positive strong polychlorinated biphenyl (PCB) degrader, Rhodococcus sp. strain RHA1, can degrade PCBs by cometabolism with biphenyl or ethylbenzene. In RHA1, three sets of aromatic-ring-hydroxylating dioxygenase genes are induced by biphenyl. The large and small subunits of their terminal dioxygenase components are encoded by bphA1 and bphA2, etbA1 and etbA2, and ebdA1 and ebdA2, respec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 69 1  شماره 

صفحات  -

تاریخ انتشار 2003